Pembuatan Peta Batas Wilayah Kelurahan Pelabuhan Kecamatan Samarinda Kota
DOI:
https://doi.org/10.51967/gets.v2i1.27Keywords:
Batas Wilayah, Citra Satelit, Fasilitas Umum,, GPS, QGISAbstract
The practical science of Geodesy is making maps of large or small parts of the earth's surface. The City of Samarinda currently has the problem of not having a city map for city government officials or local residents. The absence of a city map makes it difficult for city officials and the public to find out information on sub-district boundaries and land use in the Pelabuhan Subdistrict area, the District of Samarinda Kota. To create a map of the boundaries of the Pelabuhan Subdistrict above, a survey was carried out using a handheld GPS to surround and identify the boundaries of the Pelabuhan Subdistrict according to the direction of one of the District of Samarinda Kota officials who was very knowledgeable about the conditions in the field. The creation of the Pelabuhan Subdistrict boundary map was carried out through a digitization process in the QGIS application by displaying corrected satellite imagery. Through the QGIS application, digitization is carried out according to the conditions and conditions at the location, by paying attention to the appearance of the earth on satellite images of the City of Samarinda. The objects digitized in this process are the boundaries of the Pelabuhan Subdistrict, the District of Samarinda Kota, and public facilities. Apart from that, interpretation was carried out and it was found that land use in the District of Samarinda Kota, the City of Samarinda includes green open space, city utilities and built-up land. Land use in the form of trade and service centers is almost evenly distributed throughout the District of Samarinda Kota.
References
Ahmed, H. G. I., Mohamed, M. H., & Saleh, S. S. (2021). A GIS model for exploring the water pumped storage locations using remote sensing data. Egyptian Journal of Remote Sensing and Space Science, 24(3), 515–523. https://doi.org/10.1016/j.ejrs.2021.09.006
Al-Bahrani, H. S., Al-Rammahi, A. H., Al-Mamoori, S. K., Al-Maliki, L. A., & AL-Ansari, N. (2022). Groundwater detection and classification using remote sensing and GIS in Najaf, Iraq. Groundwater for Sustainable Development, 19, 100838. https://doi.org/10.1016/j.gsd.2022.100838
Aljenaid, S., Abido, M., Redha, G. K., AlKhuzaei, M., Marsan, Y., Khamis, A. Q., Naser, H., AlRumaidh, M., & Alsabbagh, M. (2022). Assessing the spatiotemporal changes, associated carbon stock, and potential emissions of mangroves in Bahrain using GIS and remote sensing data. Regional Studies in Marine Science, 52. https://doi.org/10.1016/j.rsma.2022.102282
Alqahtany, A. (2023). GIS-based assessment of land use for predicting increase in settlements in Al Ahsa Metropolitan Area, Saudi Arabia for the year 2032. Alexandria Engineering Journal, 62, 269–277. https://doi.org/10.1016/j.aej.2022.07.020
Bedair, S., Sayed, S. A., & AlMetwaly, W. M. (2022). Enhancing Hybrid Learning using Open Source GIS-Based Maps Archiving System. Egyptian Journal of Remote Sensing and Space Science, 25(3), 779–793. https://doi.org/10.1016/j.ejrs.2022.07.003
Çetinkaya, C., Erbaş, M., Kabak, M., & Özceylan, E. (2022). A mass vaccination site selection problem: An application of GIS and entropy-based MAUT approach. Socio-Economic Planning Sciences. https://doi.org/10.1016/j.seps.2022.101376
Chowdhury, M. S., & Hafsa, B. (2022). Multi-decadal land cover change analysis over Sundarbans Mangrove Forest of Bangladesh: A GIS and remote sensing based approach. Global Ecology and Conservation, 37. https://doi.org/10.1016/j.gecco.2022.e02151
Chukwuma, E. C., Okonkwo, C. C., Ojediran, J. O., Anizoba, D. C., Ubah, J. I., & Nwachukwu, C. P. (2021). A Gis Based Flood Vulnerability Modelling Of Anambra State Using An Integrated Ivfrn-Dematel-Anp Model. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e08048
Desalegn, H., & Mulu, A. (2021). Mapping flood inundation areas using GIS and HEC-RAS model at Fetam River, Upper Abbay Basin, Ethiopia. Scientific African, 12. https://doi.org/10.1016/j.sciaf.2021.e00834
Dhinsa, D., Tamiru, F., & Tadesa, B. (2022). Groundwater potential zonation using VES and GIS techniques: A case study of Weserbi Guto catchment in Sululta, Oromia, Ethiopia. Heliyon, 8(8). https://doi.org/10.1016/j.heliyon.2022.e10245
El-Hadidy, S. M., & Morsy, S. M. (2022). Expected spatio-temporal variation of groundwater deficit by integrating groundwater modeling, remote sensing, and GIS techniques. Egyptian Journal of Remote Sensing and Space Science, 25(1), 97–111. https://doi.org/10.1016/j.ejrs.2022.01.001
Elbeih, S. F. (2021). Evaluation of agricultural expansion areas in the Egyptian deserts: A review using remote sensing and GIS. In Egyptian Journal of Remote Sensing and Space Science (Vol. 24, Issue 3P2, pp. 889–906). Elsevier B.V. https://doi.org/10.1016/j.ejrs.2021.10.004
Elboshy, B., Alwetaishi, M., M. H. Aly, R., & Zalhaf, A. S. (2022). A suitability mapping for the PV solar farms in Egypt based on GIS-AHP to optimize multi-criteria feasibility. Ain Shams Engineering Journal, 13(3). https://doi.org/10.1016/j.asej.2021.10.013
Erdem, F., Atun, R., Yigit Avdan, Z., Atila, I., & Avdan, U. (2021). Drought analysis of Van Lake Basin with remote sensing and GIS technologies. Egyptian Journal of Remote Sensing and Space Science, 24(3), 1093–1102. https://doi.org/10.1016/j.ejrs.2021.10.006
Ghoneim, S. M., Yehia, M. A., Salem, S. M., & Ali, H. F. (2022). Integrating remote sensing data, GIS analysis and field studies for mapping alteration zones at Wadi Saqia area, central Eastern Desert, Egypt. Egyptian Journal of Remote Sensing and Space Science, 25(1), 323–336. https://doi.org/10.1016/j.ejrs.2022.02.001
Gupta, L., Agrawal, N., Dixit, J., & Dutta, S. (2022). A GIS-based assessment of active tectonics from morphometric parameters and geomorphic indices of Assam Region, India. Journal of Asian Earth Sciences: X, 8. https://doi.org/10.1016/j.jaesx.2022.100115
Gürtekin, E., & Gökçe, O. (2021). Estimation of erosion risk of Harebakayiş sub-watershed, Elazig, Turkey, using GIS based RUSLE model. Environmental Challenges, 5. https://doi.org/10.1016/j.envc.2021.100315
Isihak, S., Akpan, U., & Bhattacharyya, S. (2022). Evolution of GIS-based rural electrification planning models and an application of OnSSET in Nigeria. Renewable and Sustainable Energy Transition, 2, 100019. https://doi.org/10.1016/j.rset.2022.100019
Khalil, N., Mhanna, M., & Assaf, E. H. (2021). Horizontal corridor optimization of highway using GIS & CFSC method in mountainous areas. Egyptian Journal of Remote Sensing and Space Science, 24(3), 509–514. https://doi.org/10.1016/j.ejrs.2021.08.008
Kumar, M., Singh, P., & Singh, P. (2022). Integrating GIS and remote sensing for delineation of groundwater potential zones in Bundelkhand Region, India. Egyptian Journal of Remote Sensing and Space Science, 25(2), 387–404. https://doi.org/10.1016/j.ejrs.2022.03.003
Larkin, A., Gu, X., Chen, L., & Hystad, P. (2021). Predicting perceptions of the built environment using GIS, satellite and street view image approaches. Landscape and Urban Planning, 216. https://doi.org/10.1016/j.landurbplan.2021.104257
Li, S., Zhang, M., Yuan, F., Li, X., Wang, C., Long, J., & Jiao, J. (2022). Isotope spatiotemporal analysis and prospecting indication based on GIS in Tibet. Ore Geology Reviews, 147. https://doi.org/10.1016/j.oregeorev.2022.104997
Li, W., Winter, P. L., Milburn, L. A., & Padgett, P. E. (2021). A dual-method approach toward measuring the built environment - sampling optimization, validity, and efficiency of using GIS and virtual auditing. Health and Place, 67. https://doi.org/10.1016/j.healthplace.2020.102482
Liu, H., Zhang, Z., Chen, T., Yang, J., Li, Q., & He, D. (2021). Simplified Modelling of Transient Ground Potential Rise of GIS in Ultra-high-voltage Substations with Hybrid Reactive Power Compensation. Electric Power Systems Research, 199. https://doi.org/10.1016/j.epsr.2021.107441
Liu, Q., Zhai, G., & Lu, X. (2021). Integrated land-sea surveying and mapping of intertidal zone based on high-definition remote sensing images and GIS technology. Microprocessors and Microsystems, 82. https://doi.org/10.1016/j.micpro.2021.103937
Lumbreras, M., Diarce, G., Martin-Escudero, K., Campos-Celador, A., & Larrinaga, P. (2022). Design of district heating networks in built environments using GIS: A case study in Vitoria-Gasteiz, Spain. Journal of Cleaner Production, 349. https://doi.org/10.1016/j.jclepro.2022.131491
Massano, M., Macii, E., Lanzini, A., Patti, E., & Bottaccioli, L. (2022). A GIS Open-Data Co-Simulation Platform for Photovoltaic Integration in Residential Urban Areas. Engineering. https://doi.org/10.1016/j.eng.2022.06.020
Murugesan, M., Venkatesan, P., Kumar, S., Thangavelu, P., Rose, W., John, J., Castro, M., Manivannan, T., Mohan, V. R., & Rupali, P. (2022). Epidemiological investigation of the COVID-19 outbreak in Vellore district in South India using Geographic Information Surveillance (GIS). International Journal of Infectious Diseases, 122, 669–675. https://doi.org/10.1016/j.ijid.2022.07.010
Pepe, M., Costantino, D., Alfio, V. S., Restuccia, A. G., & Papalino, N. M. (2021). Scan to BIM for the digital management and representation in 3D GIS environment of cultural heritage site. Journal of Cultural Heritage, 50, 115–125. https://doi.org/10.1016/j.culher.2021.05.006
Quan, S. J., & Bansal, P. (2021). A systematic review of GIS-based local climate zone mapping studies. In Building and Environment (Vol. 196). Elsevier Ltd. https://doi.org/10.1016/j.buildenv.2021.107791
Taloor, A. K., Adimalla, N., & Goswami, A. (2021). Remote Sensing and GIS applications in Geoscience. Applied Computing and Geosciences, 11. https://doi.org/10.1016/j.acags.2021.100065
Tamiru, H., & Wagari, M. (2021). Evaluation of data-driven model and GIS technique performance for identification of Groundwater Potential Zones: A case of Fincha Catchment, Abay Basin, Ethiopia. Journal of Hydrology: Regional Studies, 37. https://doi.org/10.1016/j.ejrh.2021.100902
Turek, T., & Stepniak, C. (2021). Areas of integration of GIS technology and smart city tools. Research findings. Procedia Computer Science, 192, 4681–4690. https://doi.org/10.1016/j.procs.2021.09.246
Villacreses, G., Martínez-Gómez, J., Jijón, D., & Cordovez, M. (2022). Geolocation of photovoltaic farms using Geographic Information Systems (GIS) with Multiple-criteria decision-making (MCDM) methods: Case of the Ecuadorian energy regulation. In Energy Reports (Vol. 8, pp. 3526–3548). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2022.02.152
Wu, X., Xu, C., Xu, X., Chen, G., Zhu, A., Zhang, L., Yu, G., & Du, K. (2022). A Web-GIS hazards information system of the 2008 Wenchuan Earthquake in China. Natural Hazards Research. https://doi.org/10.1016/j.nhres.2022.03.003
Xiao, Y., Yan, Y., Yu, Y. S., Wang, B., & Liang, Y. H. (2022). Research on pose adaptive correction method of indoor rail mounted inspection robot in GIS Substation. Energy Reports, 8, 696–705. https://doi.org/10.1016/j.egyr.2022.03.155
Yousef, G. A., Elazony, M. A., Abdelsattar, A., Sewailam, M. M., & Elsaid, O. H. (2022). Applying an integrated Remote Sensing-GIS approach in the documentation of handicraft centers at New Valley Governorate, Egypt. Egyptian Journal of Remote Sensing and Space Science, 25(3), 731–739. https://doi.org/10.1016/j.ejrs.2022.04.004
Yudhana, A., Sulistyo, D., & Mufandi, I. (2021). GIS-based and Naïve Bayes for nitrogen soil mapping in Lendah, Indonesia. Sensing and Bio-Sensing Research, 33. https://doi.org/10.1016/j.sbsr.2021.100435
Zhang, S., Liu, X., Li, R., Wang, X., Cheng, J., Yang, Q., & Kong, H. (2021). AHP-GIS and MaxEnt for delineation of potential distribution of Arabica coffee plantation under future climate in Yunnan, China. Ecological Indicators, 132. https://doi.org/10.1016/j.ecolind.2021.108339
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal of Geomatics Engineering, Technology, and Science
This work is licensed under a Creative Commons Attribution 4.0 International License.