Studi Tentang Pemodelan Bangunan Ditinjau Dari Aspek Teknis (Studi Kasus: Bangunan di Daerah Tropis)

Authors

  • Andrew Stefano Program Studi Teknologi Geomatika, Politeknik Pertanian Negeri Samarinda, Samarinda Author
  • Sri Endayani Program Studi Kehutanan, Universitas 17 Agustus 1945 Samarinda, Samarinda Author

DOI:

https://doi.org/10.51967/gets.v1i2.14

Keywords:

Bangunan Hemat Energi, Konfigurasi Arsitektural, listrik, Pemanasan Global

Abstract

Penyebab pemanasan global adalah meningkatnya emisi CO2 di atmosfer. Kondisi ini menyebabkan bumi semakin panas dan mempengaruhi kehidupan di masa yang akan datang, es di daerah kutub mencair, permukaan laut naik setiap tahun, hingga terciptanya badai angin. Kondisi lingkungan seperti ini dapat membahayakan generasi di masa yang akan datang. Pemakaian listrik dari pembangkit berbahan bakar menggunakan fosil, merupakan salah satu penyebab terjadinya pemanasan global, karena dapat meningkatkan emisi CO2. Bangunan yang didesain tidak memperhitungkan pemakaian listrik, merupakan salah satu kontribusi dalam perusak lingkungan. Kebutuhan listrik tidak dapat dihindari karena pesatnya perkembangan teknologi. Pengaruh iklim luar daerah tropis yang panas berpengaruh ke dalam bangunan, menyebabkan beban pendinginan semakin besar. 40-50% energi listrik dalam bangunan dibutuhkan untuk proses pendinginan ruang (Air Conditioner), presentasi ini akan semakin besar kalau iklim di luar semakin panas. Usaha penghematan listrik pada skala bangunan dengan cara mentraitment konfigurasi arsitekturnya. Penyebab panas pada bangunan 80% berasal dari luar bangunan dengan mempertimbangkan desain sistem penerangan, pendinginan dan kulit bangunan. Dapat mencapai 70% pengurangan penggunaan listrik dengan penstimulasian antara model bangunan yang respond dan tidak terhadap lingkungan. Lebih hemat lagi 30-40% bila desain bangunan melibatkan penggunaan unsur tanaman dan air. Penelitian menegaskan bahwa aspek desain bangunan sangat berpengaruh terhadap penggunaan energi listrik, dan berkontribusi pada kepedulian terhadap pemanasan global dunia.

References

Ball, B. L., Long, N., Fleming, K., & Balbach, C. (2020). An open source analysis framework for large-scale building energy modeling An open source analysis framework for large-scale building energy modeling. https://doi.org/10.1080/19401493.2020.1778788

Bamdad, K., Cholette, M. E., Bell, J., & Bell, J. (2020). Building energy optimization using surrogate model and active sampling. https://doi.org/10.1080/19401493.2020.1821094

Brunetti, G. L., & Brunetti, G. L. (2020). Increasing the efficiency of simulation-based design explorations via metamodelling Increasing the efficiency of simulation-based design explorations via metamodelling. 1493. https://doi.org/10.1080/19401493.2019.1707875

Evins, R., Alexandra, R., Wiebe, E., Wood, M., Eames, M., Evins, R., Alexandra, R., Wiebe, E., Wood, M., & Eames, M. (2018). The impact of local variations in a temperate maritime climate on building energy use. Journal of Building Performance Simulation, 0(0), 1–17. https://doi.org/10.1080/19401493.2018.1536167

Fathollahzadeh, M. H., Tabares-velasco, P. C., & Tabares-velasco, P. C. (2020). Building control virtual test bed and functional mock-up interface standard : comparison in the context of campus energy modelling and control ABSTRACT. 1493(May). https://doi.org/10.1080/19401493.2020.1769191

Gagnon, R., Gosselin, L., Park, S., Stratbücker, S., Gagnon, R., Gosselin, L., Park, S., & Stratbücker, S. (2018). Comparison between two genetic algorithms minimizing carbon footprint of energy and materials in a residential building. 1493. https://doi.org/10.1080/19401493.2018.1501095

Gasparella, A., & Mahdavi, A. (2020). Special issue on the microclimatic boundary conditions in building simulation models. 1493, 2019–2021. https://doi.org/10.1080/19401493.2019.1698137

Ghiaus, C., & Alzetto, F. (2019). Design of experiments for Quick U-building method for building energy performance measurement. Journal of Building Performance Simulation, 0(0), 1–15. https://doi.org/10.1080/19401493.2018.1561753

Ghofrani, A., Nazemi, S. D., & Jafari, M. A. (2020). Prediction of building indoor temperature response in variable air volume systems ABSTRACT. 1493. https://doi.org/10.1080/19401493.2019.1688393

Lanahan, M., Engert, S., Kim, T., Tabares-velasco, P. C., Lanahan, M., Engert, S., Kim, T., & Tabares-, P. C. (2018). Rapid visualization of the potential residential cost savings from energy storage under time-of-use electric rates. Journal of Building Performance Simulation, 0(0), 1–14. https://doi.org/10.1080/19401493.2018.1470203

Leroux, G., Mendes, N., Stephan, L., Pierrès, N. Le, Leroux, G., Mendes, N., Stephan, L., & Pierrès, N. Le. (2018). Innovative low-energy evaporative cooling system for buildings : study of the porous evaporator wall. 1493. https://doi.org/10.1080/19401493.2018.1501094

Lowcay, D., Gunay, H. B., Brien, W. O., Gunay, H. B., & Brien, W. O. (2020). Simulating energy savings potential with high- resolution daylight and occupancy sensing in open-plan offices and occupancy sensing in open-plan offices. https://doi.org/10.1080/19401493.2020.1807604

Mahdavi, A., & Mahdavi, A. (2020). In the matter of simulation and buildings : some critical reflections. 1493. https://doi.org/10.1080/19401493.2019.1685598

Masi, R. F. De, Gigante, A., Ruggiero, S., Peter, G., Francesca, R., Gigante, A., Ruggiero, S., & Peter, G. (2020). The impact of weather data sources on building energy retrofit design : case study in heating- dominated climate of Italian backcountry heating-dominated climate of Italian backcountry. 1493. https://doi.org/10.1080/19401493.2020.1725131

Menberg, K., Heo, Y., & Choudhary, R. (2018). Influence of error terms in Bayesian calibration of energy system models. 1493(May). https://doi.org/10.1080/19401493.2018.1475506

Mendes, E., Mendes, N., & Mendes, E. (2019). An instructional design for building energy simulation e-learning : an interdisciplinary approach An instructional design for building energy simulation e-learning : an interdisciplinary approach. Journal of Building Performance Simulation, 0(0), 1–17. https://doi.org/10.1080/19401493.2018.1560500

Murano, G., Dirutigliano, D., & Corrado, V. (2018). Improved procedure for the construction of a Typical Meteorological Year for assessing the energy need of a residential building. Journal of Building Performance Simulation, 0(0), 1–14. https://doi.org/10.1080/19401493.2018.1479774

Nagpal, S., Mueller, C., Aijazi, A., & Reinhart, C. F. (2018). A methodology for auto-calibrating urban building energy models using surrogate modeling techniques. Journal of Building Performance Simulation, 0(0), 1–16. https://doi.org/10.1080/19401493.2018.1457722

Ouf, M. M., Brien, W. O., Gunay, H. B., Ouf, M. M., Brien, W. O., & Optimization, H. B. G. (2020). Optimization of electricity use in office buildings under occupant uncertainty. 1493. https://doi.org/10.1080/19401493.2019.1680733

Pernigotto, G., Prada, A., Gasparella, A., Pernigotto, G., & Prada, A. (2019). Extreme reference years for building energy performance simulation Extreme reference years for building energy performance simulation. 1493. https://doi.org/10.1080/19401493.2019.1585477

Ren, Z., Motlagh, O., & Chen, D. (2020). A correlation-based model for building ground- coupled heat loss calculation using Artificial Neural Network techniques A correlation-based model for building ground-coupled heat loss calculation using. 1493. https://doi.org/10.1080/19401493.2019.1690581

Salazar, E. M. De, & Sanz-calcedo, J. G. (2018). Study on the influence of maintenance operations on energy consumption and emissions in healthcare centres by fuzzy cognitive maps. 1493. https://doi.org/10.1080/19401493.2018.1543351

Saloux, E., Candanedo, J. A., & Candanedo, J. A. (2018). Control-oriented model of a solar community with seasonal thermal energy storage : development , calibration and validation. 1493. https://doi.org/10.1080/19401493.2018.1523950

Salvati, A., Palme, M., Chiesa, G., & Kolokotroni, M. (2020). Built form , urban climate and building energy modelling : case-studies in Rome and Antofagasta. Journal of Building Performance Simulation, 0(0), 1–17. https://doi.org/10.1080/19401493.2019.1707876

Saouri, A. M., Bat, E., Romani, Z., & Bozonnet, E. (2020). Integration of a practical model to assess the local urban interactions in building energy simulation with a street canyon energy simulation with a street canyon. https://doi.org/10.1080/19401493.2020.1818829

Sardoueinasab, Z., Yin, P., & Neal, D. O. (2020). Energy modeling and analysis of variable airflow parallel fan-powered terminal units using Energy Management System ( EMS ) in EnergyPlus ABSTRACT. 1493. https://doi.org/10.1080/19401493.2019.1679260

Sousa, G., Robinson, D., & Robinson, D. (2020). Enhanced EnHub : dynamic simulation of housing stock energy systems Enhanced EnHub : dynamic simulation of housing stock energy systems ABSTRACT. https://doi.org/10.1080/19401493.2020.1788641

Terms, F. (2020). Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration. 1493. https://doi.org/10.1080/19401493.2020.1723704

Togashi, E. (2018). Risk analysis of energy efficiency investments in buildings using the Monte Carlo method. Journal of Building Performance Simulation, 0(0), 1–19. https://doi.org/10.1080/19401493.2018.1523949

Xie, Y., Mendon, V., Halverson, M., Bartlett, R., Chen, Y., Rosenberg, M., Taylor, T., Liu, B., Xie, Y., Mendon, V., Halverson, M., Bartlett, R., Chen, Y., Rosenberg, M., Taylor, T., & Liu, B. (2018). Assessing overall building energy performance of a large population of residential single-family homes using limited field data. Journal of Building Performance Simulation, 0(0), 1–14. https://doi.org/10.1080/19401493.2018.1477833

Downloads

Published

2023-03-07

Issue

Section

Articles

How to Cite

Stefano, A., & Endayani, S. (2023). Studi Tentang Pemodelan Bangunan Ditinjau Dari Aspek Teknis (Studi Kasus: Bangunan di Daerah Tropis). Journal of Geomatics Engineering, Technology, and Science, 1(2), 66-75. https://doi.org/10.51967/gets.v1i2.14