Pemanfaatan Algoritma NDVI dan SAVI untuk Identifikasi Perubahan Kerapatan Vegetasi di Kabupaten Toraja Utara Menggunakan Citra Landsat 8 Tahun 2019 dan 2023

Authors

  • Austro Yoris Padatuan Program Diploma 3 Teknologi Geomatika, Politeknik Pertanian Negeri Samarinda, Kota Samarinda Author
  • Nia Kurniadin Program Studi Teknologi Rekayasa Geomatika dan Survei, Politeknik Pertanian Negeri Samarinda, Kota Samarinda Author https://orcid.org/0000-0002-7748-378X
  • Dyah Widyasasi Program Studi Teknologi Geomatika, Politeknik Pertanian Negeri Samarinda, Kota Samarinda Author
  • Andi Baso Sofyan A. P. Program Studi Teknologi Geomatika, Politeknik Pertanian Negeri Samarinda, Kota Samarinda Author

DOI:

https://doi.org/10.51967/gets.v3i1.44

Keywords:

Vegetastion Density, Vegetation Index, Landsat 8, NDVI, SAVI

Abstract

This research is motivated by the rapid growth and development of infrastructure and tourism in North Toraja Regency. This has an impact on the closure of green land or vegetation areas and a decrease in environmental quality. Vegetation is a collection of several types of plants that grow together in one place to form a unity where individuals depend on each other. Vegetation has a major influence on all aspects of life, one of which is changes in forest land cover. If the vegetation has a low level of density, it will cause a reduction in forest litter, because there is no longer any part of forest vegetation on the land. Based on this information, it is necessary to conduct research on the level of vegetation density in North Toraja as a reference to see the condition of vegetation density and changes in vegetation density. The Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) algorithms are applied to Landsat 8 imagery. Then the data is processed using GIS software. Based on the NDVI algorithm, the vegetation density that decreased in the high-medium class was 11,484.32 Ha; high-low 2,718.90 Ha; medium-low 7,107.67 Ha; and there was an increase in the low-medium class of 4,741.15 Ha; low-high 1,090.48 Ha; and medium-high 16,540.27 Ha. Meanwhile, based on the SAVI algorithm, vegetation density decreased in the high-medium class 11,484.31 Ha; high-low 3,791.33 Ha; medium-low 1,121.40 Ha; and there was an increase in the low-medium class 1,428.21 Ha; low-high 2,055.49; and medium-high 2,762.21 Ha.

References

Fitriani, V., Gandri, L., Indriyani, L., Bana, S., & Ahmaliun, L. De. (2023). Analisis Hubungan Land Surface Temperature (LST) dan Indeks Kerapatan Vegetasi (NDVI) DAS Wanggu, Sulawesi Tenggara. JURNAL ILMU-ILMU KEHUTANAN, 7(1), 49. https://doi.org/10.31258/jiik.7.1.49-57

Hakim, F. L. (2019). Interpretasi Citra Satelit Landsat 8 untuk Pemetaan Tutupan Lahan Provinsi Jawa Timur [Universitas Jember]. https://repository.unej.ac.id/handle/123456789/98015

Hardianto, A., Dewi, P. U., Feriansyah, T., Sari, N. F. S., & Rifiana, N. S. (2021). Pemanfaatan Citra Landsat 8 dalam Mengidentifikasi Nilai Indeks Kerapatan Vegetasi (NDVI) Tahun 2013 dan 2019 (Area Studi: Kota Bandar Lampung). Jurnal Geosains Dan Remote Sensing, 2(1), 8–15. https://doi.org/10.23960/jgrs.2021.v2i1.38

Innadya, A., Pratama, S., Khotimah, H. K., Ridwana, R., & Somantri, L. (2022). Analisis Kerapatan Vegetasi untuk Perencanaan Wilayah di Desa Cihideung Kabupaten Bandung Barat Menggunakan Citra Sentinel-2a Dengan Metode Msarvi. Jurnal Planologi, 19(2), 192. https://doi.org/10.30659/jpsa.v19i2.23960

Muhsoni, F. F. (2015). Penginderaan Jauh (Remote Sensing) (Edisi I). UTMPRESS.

Yudistira, R., Meha, A. I., & Prasetyo, S. Y. J. (2019). Perubahan konversi lahan menggunakan NDVI, EVI, SAVI dan PCA pada Citra Landsat 8 (Studi Kasus : Kota Salatiga). Indonesian Journal of Computing and Modeling, 2(1), 25–30. https://ejournal.uksw.edu/icm/article/view/2537

Zulfajri, Danoedoro, P., & Murti, S. H. (2021). Klasifikasi Penutup/Penggunaan Lahan Data Landsat-8 OLI Menggunakan Metode Random Forest. Jurnal Penginderaan Jauh Indonesia, 03(01), 1–7. https://journal.its.ac.id/index.php/jpji/article/view/266

Published

2024-09-30

How to Cite

Padatuan, A. Y., Kurniadin, N., Widyasasi, D., & Sofyan A. P., A. B. (2024). Pemanfaatan Algoritma NDVI dan SAVI untuk Identifikasi Perubahan Kerapatan Vegetasi di Kabupaten Toraja Utara Menggunakan Citra Landsat 8 Tahun 2019 dan 2023. Journal of Geomatics Engineering, Technology, and Science, 3(1), 17-21. https://doi.org/10.51967/gets.v3i1.44

Similar Articles

1-10 of 16

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>